Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations

نویسندگان

چکیده

• Propose a novel deep learning model for network-level traffic condition forecasting. Implement dynamic modules to learn state-dependent spatial correlations among roads. Decrypt and relate learnt parameters flow theory. Highlight the possibility combine accuracy interpretability in neural networks. Accurate explainable short-term forecasting is pivotal making trustworthy decisions advanced control guidance systems. Recently, approach, as data-driven alternative model-based data assimilation prediction methods, has become popular this domain. Many of these models show promising predictive performance, but inherently suffer from lack interpretability. This difficulty largely originates inconsistency between static input–output mappings encoded networks nature phenomena. Under different conditions, such freely-flowing versus heavily congested traffic, are needed predict propagation congestion resulting speeds over network more accurately. In study, we design variant graph attention mechanism. The major innovation so-called convolution (DGC) module that local area-wide convolutional kernels dynamically generated evolving states capture real-time dependencies. When conditions change, correlation by DGC changes well. Using DGC, propose multistep model, Dynamic Graph Convolutional Network (DGCN). Experiments using real freeway DGCN competitive performance compared other state-of-the-art models. Equally importantly, process trained indeed explainable. It turns out learns mimic upstream–downstream asymmetric information typical road operations. Specifically, there exists speed-dependent optimal receptive field – which governs what assimilate consistent with back-propagation speed stop-and-go waves streams. implies We believe research paves path transparent applied

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Decision Support in Dynamic Traffic Management. Real-time Scenario Evaluation * Decision Support in Dynamic Traffic Management. Real-time Scenario Evaluation

To support operators in Regional Traffic Management Centers in their task to efficiently and safely manage traffic flows on the motorway and urban networks, a decision support system is being developed. An essential function of this system is its ability to predict the effects of a large number of candidate control scenarios, given the recurrent and non-recurrent conditions in the network. This...

متن کامل

Real-Time Forecasting by Bio-Inspired Models

In recent years, bio-inspired methods for problem solving, such as Artificial Neural Networks (ANNs) or Genetic and Evolutionary Algorithms (GEAs), have gained an increasing acceptance as alternative approaches for forecasting, due to advantages such as nonlinear learning and adaptive search. The present work reports the use of these techniques for Real-Time Forecasting (RTF), where there is a ...

متن کامل

Real Time Dynamic Simulation of Power System Using Multiple Microcomputers

Recent developments in the design and manufacture of microcomputers together with improved simulation techniques make it possible to achieve the speed and accuracy required for the dynamic simulation of power systems in real time. This paper presents some experimental results and outlines new ideas on hardware architecture, mathematical algorithms and software development for this purpose. The ...

متن کامل

Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah

IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transportation Research Part C-emerging Technologies

سال: 2021

ISSN: ['1879-2359', '0968-090X']

DOI: https://doi.org/10.1016/j.trc.2021.103185